

		· ·		II.		
Topic	: Mole Concept					
Single Short	of Questions choice Objective ('–1' Subjective Questions (the Following (no nega	'-1' negative marking)	Q.10	(3 marks, 3 min.) (3 marks, 3 min.) (8 marks, 10 min.)	M.M., Min. [30, 30] [3, 3] [8, 10]	
1.	Number of gold atoms (A) 4.5 × 10 ²⁰	in 300 mg of a gold ring (B) 6.8 × 10 ¹⁵	of 20 carat gold ((C) 7.6 × 10 ²⁰	(pure gold is 24 carat) aı (D) 9.5 × 10 ²⁰	e:	
2.		ng 64 g Oxygen, 11.2 L ss of the oxygen gas left (B) 32 g		T.P. and 6.022 × 10 ²³ O: (D) none	xygen atoms are	
3.	Column-I (A) 32 g each of O ₂ and S (B) 2 gram-molecules of K ₃ [Fe(CN) ₆] (C) 144 g of Oxygen atom (D) From 168 g of iron, 6.022 × 10 ²³ atoms of iron are removed, then the iron left		Column-II (p) 2 moles of Fe (q) 3 moles of ozone molecule (r) one mole of given unit (s) 12 moles of carbon atoms			
4.	If a sample of Ferric su given sample are : (A) 1.8 N _A	Iphate Fe ₂ (SO ₄) ₃ contain	ns 7.2 moles of O-a	atoms, then the number of (D) 1.4 N _A	of S-atoms in the	
5.	10 moles of CO ₂ do not contain : (A) 120 g of C (C) 10 N _A molecules of CO ₂		(B) 6.022 × 10 ²⁴ atoms of O (D) 20 gram-atoms of O.			
6.	A compound has the n (A) 31 amu	nolecular formula X ₄ O ₆ . (B) 37 amu	If 11 g of X ₄ O ₆ ha (C) 42 amu	as 6.2 g of X, then atom (D) 98 amu	ic mass of X is :	
7.		s Ca = 40%, C = 12% a Ca in 5 g of CaCO ₃ fror (B) 0.2 g				
8.	In compound A, 1 g nitrogen combine with 0.57 g oxygen. In compound B, 2 g nitrogen combine of 2.28 g oxygen and in compound C, 3 g nitrogen combine with 5.13 g oxygen. These results obey the law (A) multiple proportions (B) constant proportions (C) mixed proportions (D) none of these					
9.	The respective ratio of same mass of copper, (A) 1:2		mples of pure Cut	O and Cu ₂ O, if both sam (D) none of th		
10.	Find the relative density of SO ₃ gas with respect to methane.					
11.	(A) 143	FP is 0.001287 g mL ⁻¹ . If (B) 14.3 density of hydrogen at S	(C) 1.43	(C) 1.43 (D) 0.143		
12.	The atomic mass of a n	netal is 27. If its valency (B) 6.675	is 3, the vapour de (C) 667.5	ensity of the volatile meta (D) 81	al chloride will be	

Answer Key

DPP No. #3

1. (C) (A) 2. (B)

3.

4.

5 7

6. (A)

7. (A)

8. (A)

9. (C)

10. 5.

11. (B)

12. (A)

Hints & Solutions

DPP No. #3

1. For 24 carat, no of gold atoms =
$$\frac{300 \times 10^{-3}}{197} \times N_A$$

For 20 carat, no of gold atoms =
$$\frac{300 \times 10^{-3}}{197} \times \frac{20 \times N_A}{24}$$
$$= 7.64 \times 10^{20} \text{ U7HIM}$$

2. Removed mass =
$$\frac{11.2}{22.4} \times 32 + \frac{6.02 \times 10^{23}}{6.02 \times 10^{23}} \times 16 = 32 \text{ g}$$

mass left = $64 - 32 = 32 \text{ g}$.

3. (A) 32 g each of
$$O_2$$
 and $S = \frac{32}{32} = 1$ mole

(B) 2 gram-molecule of
$$K_3$$
 [Fe(CN)₆] \Rightarrow has 2 moles of Fe \Rightarrow and 12 moles of C-atom

(C) 144 g of oxygen atom =
$$\frac{144}{16}$$
 = 9 mole of 'O' atom; \therefore Moles of $O_3 = \frac{9}{3} = 3$

(D) from 168 g i.e. 3 moles Fe ⇒ 1 mole Fe is removed i.e. ⇒ 2 moles of Fe is left.

Moles of O- atoms: Moles of S- atoms = 12:3

Moles of S- atoms =
$$\frac{3}{12} \times 7.2 = 1.8$$

5. Mass of C = Moles of C
$$\times$$
 At. mass of C
= Moles of CO $_2 \times$ At. mass of C
= 10 \times 12 = 120 g

Moles of O- atoms =
$$2 \times n_{CO_2}$$

$$= 2 \times 10$$

$$= 20 = g - atoms of O.$$

No. of O- atoms =
$$20 \times N_A = 1.2044 \times 10^{25}$$

No. of molecules of
$$CO_2 = Moles$$
 of $CO_2 \times N_A = 10 \times N_A$

$$(4a + 96) g X_4O_6$$

$$\therefore \qquad 10 \text{ g X}_4 \text{O}_6 \text{ has} - \left(\frac{4a \times 10}{4a + 96}\right) \text{g X}$$

$$\frac{4a \times 10}{4a + 96} = 5.72 \qquad \Rightarrow \qquad a = 32.$$

7. Mass of Ca =
$$5 \times \frac{40}{100} = 2g$$
.

8. N
$$\rightarrow$$
 1g 2g 3g O \rightarrow 0.57g 2.24g 5.11g

$$O \rightarrow \frac{0.57}{1} \frac{2.24}{2} g \frac{5.11}{3} g$$

$$O \rightarrow \quad \frac{0.57}{1} \quad \frac{0.57 \times 2}{1} \quad \frac{0.57 \times 3}{1}$$

So, the mass ratio of oxygen combined with 1 g of nitrogen is simple ratio 1,2,3.

9. Ratio of weight of oxygen in samples = Ratio of valency of Cu in two compounds = 2 · 1

10. R.D. =
$$\frac{M_{SO_3}}{M_{CH_4}} = \frac{80}{16} = 5$$
.

11. Molar mass of air at STP =
$$0.001293 \text{ g mL}^{-1} \times 22400 \text{ mL} = 28.7 \text{ g}$$

so V.D. =
$$\frac{28.7}{2} \approx 14.3$$

Hence, volatile chloride will be AICI₃ so V.D. =
$$\frac{M_{AICI_3}}{2} = \frac{133.5}{2} = 66.75$$